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ABSTRACT

The U.S. Department of Energy maintains the Strategic Petroleum Reserve
(SPR), a 750-million barrel crude oil reserve stored in caverns leached
in Gulf Coast salt domes. Typical SPR caverns have been investigated
with a simplified creep closure model in an effort to predict the long-
term effects of creep closure on the caverns as well as to ascertain the
relationships between lost volume and operational procedure. In
particular, the effects of operating the caverns at a higher wellhead
pressure, in order to mitigate volume loss, were investigated. As
expected, higher volume losses were found for deeper caverns and caverns
operated at lower wellhead pressure. In addition, the reduction in
volume lost for a given increase in wellhead pressure was found to
increase nonlinearly with increasing cavern depth. The distribution of
the volume loss was also calculated. This distribution was found to be
only slightly dependent on cavern depth, with 80 to 90% of the volume
loss occurring in the bottom 30% of the caverns. Finally, the results
from two different temperature approximations were compared. As most
engineering calculations of creep assume a constant, average temperature
throughout the oil and salt, this temperature profile was compared to one
that was linear in the axial direction while invariant in the radial and
time dimensions. The results of the two methods of approximating
temperature, for volume loss of caverns operated for 30 years at 41.4 bar
(600 psia), were found to deviate nonlinearly with cavern depth. The
volume loss predicted by the average temperature model was up to 35% less
than that predicted by the linear temperature profile.
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INTRODUCTION

Underground salt domes have been studied for a variety of uses including
the mining of salt, storage of petroleum products and radioactive and
chemical waste, and compressed air energy storage. Salt dome utilization
generally requires the formation of cavities in the dome itself. Once
formed, these cavities begin to creep closed due to the lithostatic
stress on the cavity walls and the plasticity of the salt.

The creep closure of these salt dome cavities is of particular interest
to the U.S. Department of Energy which maintains the Strategic Petroleum
Reserve (SPR). This reserve contains over 750-million barrels of crude
oil stored underground in salt domes along the Gulf Coast. These
underground cavities range from a converted salt mine in the Weeks Island
dome, to the cylindrical Phase II/III caverns in other domes leached
specifically for crude oil storage.

An idealized Phase II/III cavern is shown in Figure 1. These caverns are
generally 610 m (2000 ft) on axis with a radius of 30.5 m (100 ft). A
cased well with a hanging string extends from the surface to the cavern.
As the cavern creeps inward due to the lithostatic pressure (which
exceeds the cavern pressure), the cavern pressure rises and is controlled
by removing brine from the cavern thus preventing the pressure at the
casing seat from approaching its design limit. The oil is withdrawn by
injecting fresh water into the brine region through the hanging string,
floating the oil out of the cavern through the annulus between the
hanging string and the well. Because fresh water is used for the
drawdown, additional volume is leached during drawdown.

PREVIOUS WORK

In an effort to predict the long-term effects of creep closure on the
salt dome cavities, as well as to ascertain the relationships between
lost volume and operational procedure, a number of studies have been
conducted. The first step towards mathematically characterizing creep
closure of salt dome cavities is to determine the nature of the salt
itself. Once the salt's creeping response to pressure has been
represented mathematically, long-term creep on cavities can be modelled.

Numerous studies consisting primarily of laboratory measurements have
demonstrated that creep in rock salt occurs in three different regimes:
a transient phase, followed by a steady state phase, and finally a
rupture phase. The steady state regime, where the bulk of the salt
response is concentrated, is often modelled by a power law:

+S - C exP[+) [$J” (1)
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Figure 1. Typical SPR cavern, 610 m - 1219 m (2000 ft - 4000 ft), with
wellhead pressure maintained at or near 41.4 bar (600 psia) and with the
initial oil/brine interface at a depth of 76 m (250 ft) above the cavern
floor.
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In this equation, +, represents the steady state creep rate, while C and
Q are constants, R, is the universal gas constant, T is temperature, p is
an average shear modulus, 7 denotes the effective stress (a scalar
measure of the deviatoric stress components at a point in the salt), and
n is the steady state creep exponent, usually taken to be between 3.5 and
5.5. Several reviews of the work characterizing salt creep via
laboratory and in situ measurements have been published.l**.3.'+.5  By
incorporating salt creep equations, such as the power law in computer
codes, creep closure calculations can be performed for a wide variety of
salt dome cavities. Past studies have generally employed finite element
analysis while approximating the salt response with a steady state model,
neglecting the transient response. Several authors have quantified this
approximation. For example, Morgan et al.6 have found that including
transient creep does not significantly affect the agreement between in
situ measurements and calculations of creep closure.

The caverns modelled with finite element analysis have varied in size and
shape. Anderson7 performed a finite element analysis of a spherical
cavity in a half space. Representing the salt creep with the steady
state power law model, Anderson investigated the effects of the
temperature field in the dome, the depth-to-radius ratio of the cavity,
and the pressure in the cavity (taken to be constant) on volume loss and
creep rate. Van Sambeek* used finite element analysis as well as an
approximate analytical solution to investigate the pressure evolution and
rate of creep closure for plugged and abandoned solution (brine-filled)
wells. The compressibility of the brine was taken to be constant while
temperature, well pressure, and lithostatic pressure were modelled as
linear functions of depth. Agreement between the finite element and
analytical methods was found to be dependent on cavern shape. In a
similar study, Preece et a1.g employed finite element analysis to
calculate creep closure in brine-filled boreholes in the Big Hill SPR
salt dome. Again, the compressibility of the brine was taken to be
constant while temperature, well pressure, and lithostatic pressure were
modelled as linear functions of depth. The results of these
calculations, radial displacements and wellhead pressures, were compared
to field measurements. The measured values of these parameters were
found to exceed the calculated values by a factor of 2 to 2.5. In
another finite element analysis, Preece and Foley10 calculated volume
loss due to creep closure while investigating the relationship between
cavern spacing and structural safety. This work employed the steady
state power law with an allowance for fracturing and was conducted for
the designated thirty-year lifespan of SPR caverns. In order to include
the effects of drawdown leaching, the cavern shape was modified every
five years by simulating a drawdown. This was facilitated by a solution
mining code developed by Russo.ir Cavern spacing was also investigated
in a similar finite element study by Ratigan and DeVries.l* Although the
effects of cavern drawdown were not included in this study, Ratigan and
DeVries did investigate the relevance of cavern operation parameters,
wellhead pressure in particular, on potential cavern collapse due to
creep. FischerI investigated creep effects on batteries of caverns in a
single dome. In particular, the results of an axisymetric method of
"capturing three-dimensional effects within the constraints of a two-
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dimensional analysis" were compared to those of finite element analysis.
The pseudo-three-dimensional axisymetric method predicted less creep in
the caverns. This is due largely to the presence of the cavern roof and
floor material in the three-dimensional finite element analysis, which
has the effect of "slowing" radial creep in these regions.

Finally, ToddI evaluated creep closure for SPR Phase II/III caverns at
different wellhead pressures. By assuming a cavern pressure which varied
linearly with depth, for a 610 m (2000 ft) cavern with a roof depth of
610 m (2000 ft), filled entirely with crude oil, Todd calculated the
ratio of the volume loss for caverns operated at pressures other than
41.4 bars (600 psia) to that of a cavern operated at 41.4 bars (600 psia)
using a power law model with various exponents.

The current work has been conducted to address several topics: (1) the
effects of cavern depth and wellhead pressure on creep closure, (2) the
distribution of volume loss with depth, and (3) the effect of the
temperature approximation on the results of creep closure calculations.
Moreover, these topics have been addressed through the use of a
simplified creep model capable of performing the same sort of calulations
typically carried out by the finite element method. Other topics which
cannot be addressed with the finite element method but are easily
explored with this model, such as the evolution of the oil/brine
interface depth with time and the effects of an oil leak on the creep
closure, wellhead pressure, and interface depth, have been discussed
elsewhere.15

MODEL

The model used in this work considers radial creep only, an approximation
which improves with increasing aspect ratio (length/diameter).
Throughout this work, this ratio is 10. The program is initialized by a
right circular cylinder radial profile. In addition, an initial wellhead
pressure PW(t=O), and an initial interface depth, z,(t-0) are required.
Because the equations of state for both brine and crude are included in
the model (and thus each fluid's compressibility), P, and Zi can be
calculated (by iteration) from the equations governing cavern creep.
Thus, it is possible to calculate the variation in P,, zi, and r(z) with
time. The motivation in writing the program to allow P, to change with
time is that this approach allows the only measurable parameters for
actual caverns, P,, zi, and the rate of fluid removal, to be related to
the creep rate, complimenting previous finite element studies of creep
closure for SPR caverns which have generally employed the following
assumptions: constant or nearly constant P,, a single fluid i.e. no
interface, and no fluid removal. Assuming constant Pw precludes the
necessessity of allowing for the elastic (time-independent) response of
the cavern. Although all of the results presented in this paper assume
constant Pw, any application of the model which allows Pw to vary with
time would require either an allowance for an elastic response, or
evidence that its contribution is negligible. Such applications might
provide information concerning the time-dependent behavior of P, and zi
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which is particularly useful when examining real cavern data, P,(t) and
zi(t> 9 in an effort to detect cavern leaks.

Due to the nature of SPR caverns, the actual temperature profile of the
salt near SPR caverns is unknown. Although the temperature profile in
the salt dome itself can be measured, once a cavern is filled this
profile begins to vary as a function time and the distance from the
cavern axis. This is a direct result of introducing oil into the cavern
at a temperature below that of the salt. Convective heat transfer
between the salt and the oil changes the temperature gradient in the salt
near the cavern. As no attempts have been made to measure the
temperature gradient in the salt near the cavern, the actual salt
temperature profile is unknown. Most authors employ an average
temperature, based on temperature logs of SPR caverns which show the
temperature of the oil to vary as little as O.O036"C/m (O.O02"F/ft).
Numerical work has been done to estimate the rate of circulation in SPR
caverns16 and the long term effects of the lower initial temperature of
oil on the temperature profile in the surrounding salt17. In particular,
Tomaskol7 found that nine years after filling an SPR cavern, the effect
of the lower oil fill temperature extended some 0.9 cavern diameters from
the cavern wall into the salt, with the salt nearest the cavern obviously
affected the most. The temperature extending from the cavern wall to 0.2
diameters into the salt was calculated to be constant and equal to a
value 8.3"C (15°F) higher than that of the stored oil. From 0.2 to 0.9
cavern diameters from the wall into the salt, the radial temperature
profile at a given depth increased from its constant value at 0.2
diameters to the lithostatic value at 0.9 cavern diameters. Beyond 0.9
cavern diameters, the salt exhibited its original lithostatic temperature
gradient. The most accurate model of the temperature profile in the salt
surrounding an SPR cavern would therefore be at least two dimensional and
time dependent in a manner consistent with the thermal equilibrium
process ongoing between the stored oil and the salt. The two extremes
examined here, linear variation with depth and constant average
temperature, represent bounds on either side of the actual temperature
field.

The derivation of the equations governing the model begins with a force
balance on a fluid element:

dP
dz = Pi3 (2)

where P is the pressure, z the axial coordinate, p the density, and g the
gravitational constant. This relationship holds in both the crude and
brine regions. Thus if the axial coordinate increases positively with
depth and is zeroed at the surface,
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where the subscripts C and B denote crude oil and brine, respectively.
The axial coordinates of the top and bottom of the cavern and the
crude/brine interface depth are denoted z,., zb, and zi respectively.

In order to integrate equations (3) and (4), expressions for pc and PB
are required. An equation of state for crude oil can be found in the
Petroleum Production Handbook'* and rearranged in the form

PC = P;(T)
t

1 - C; T + C;(T) P

with

P;(T) = pH O(T)
I
1.00009456 + 0.165952 3

CIB

CT - 5.7627 x 1O-4 1
c  1 . 0 0 0 0 9 4 5 6  +  0 . 1 6 5 9 5 it

Cpc(T) =       .018 1.00009456 T/K) - + 6.436 0.16595 + 3.6 1.45 bar x lo-'

( 5 )

(6)

( 7 )

(8)

where T denotes temperature (in K) and 5 is the crude oil specific
gravity, taken to be 0.876 throughout this work. For computional
simplicity, p,O(T)  is taken to be 1.0296 g/cm3 throughout this work (the
variation with temperature of this parameter, 0.05% change per degree K,
has been neglected). In the analysis that follows, it will be referred
to simply as pco. The value of this parameter was obtained by assuming a
nominal cavern temperature of 323 K (121"F), the temperature at a depth
of 914 m (3000 ft) (from equation (15)). The value of the parameter
~mo~(323 K), taken to be 0.98807 g/ma, was obtained from the Handbook of
Chemistry and Physicsis. A similar equation of state has been developed
for saturated brine (see Appendix A):

'B -

2 3
C; T + C; T2 + C; T3 + C; PB (9)
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where

0

pB
- 2.0149 g/cm3

CT 8.4868 x 10
-9

B - K

CT2 8.933 + 1O-6
B -

K2

CT3 -3.272 x 1O-3
B =

K3

(10)

(11)

(12)

(13)

c; - 2.498 x 10
-5

bar (14

Two temperature profiles were used in this work: an axially linear
radially and time invariant profile, and an average temperature profile
The expression,

T - mTz+bT (15)

was used to model both. For the linear temperature profile, the
parameters q and b, were taken to be 0.0255 K/m (0.014 "F/ft) and
299.44 K respectively. Using these parameters for a cavern with zt =
610 m (2000 ft) and Zb = 4000, the temperature at the top of the cavern
is 315 K (107°F) while that at the bottom is 330.6 K (135°F). The second
temperature approximation, employing an average temperature throughout
the system, was accomplished by choosing mT and b, such that

T = Tave - 7~'~ml point
+ b

T (16)

for all 2, where Z,idpofnt is the depth at the axial midpoint of the
cavern. For example, for the above cavern, the temperature at the
midpoint would be (0.0255 K/m)*914m  + 299.4 K - 322.7 K. Thus, the input
to the program would be 0.0 and 322.7 K for mr and b,, respectively. The
average temperature approximation results in a difference of 14°F at the
top and bottom of a 610 m (2000 ft) cavern.
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The formulation of the model continues by substituting equation (15) for
T in equations (S), (8), and (9). By making this substitution in
equation (8), a second expression for the crude oil equation of state
parameter CcP(T) can be obtained:

where

M =

B =

Cc’ W - Mz+B (17)

. (0.018 l/K) mT

1.00009456 + 0.16595 1
(0018 l/K) bT - 6.436 + 3.6

1.00009456 + 0.16595

1.45 x 10
-5

bar 1 (18)

(19)

Combining equations (3) and (S), a differential equation for the pressure
in the crude region can be obtained.

dP
hz= P; l-

t
C;(y Z + bT> + (M z ‘(20)

Rearranging equation (19),

P' + P
t
-P; g M z - P”C g B

(21)

= p; g 1 - C; bT
1

- P; g c; “T 2

the standard form of a first-order linear ordinary differential equation
is obtained. This can be solved by multiplying each side by an
integrating factorzO and then integrating. The integrating factor is
calculated from:

ew -P; g M z

= e x p
-p; g M z2

2

P”C g B

(22)

P”C  g B z

I
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Multiplying each side of equation (21) by the right-hand side of equation
(22) yields a further rearrangement of equation (21) which can be
integrated,

d
dz

P exp
-p;g M z2- P; g B z

2 I

- [p; g [l - C;bT]  - P; gc;y z] (23)

- p;g M z2- P; g B z

2

If we define P, = P, + P,, where P, is the pressure at the roof of the
cavern (z - zt> and P, the hydrostatic head contribution of the oil
column running from the wellhead to the roof of the cavern, we can
integrate equation (23) with P - P, at z - zt. This yields an expression
for the pressure in the crude oil region as a function of depth:

P,(z) =

-p; g M z2 - PC” g B z

2

1p; g 1 - C; bT - P; g c; mT z

1

dz +

(25)

Pt exp
-p; g M z2- p; g B z

2

-$g M z
2

- P; g B z

exp 2
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This equation can be simplified no further and is solved numerically in
the program.

Substituting equation (9) into equation (4) and integrating in similar
fashion, with P - Pi - P,(z - z,), where P, is the pressure at the
interface depth zi, evaluated from equation (25)), a similar expression
can be obtained for the pressure in the brine region:

P,(z) - - (1 + @) + p; g C; Q(z) +

CP t

Pi + (’ + ‘)
CP

B
B

(26)

- P; g C; Q(z)

J

- zi)p; g c;

where

2 3
i[, = -c; bT + C; b; + C;f b; (27)

(28)

2 II

+[p;g($  + p,:c; z+p;:c;
I( 1

with
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I - -c;mT + 2 Ci2bT "5-r + 3 Ci3b; mT

II
T2 2

- 'B?C
T3 2

+ 3 'B "T bT

(29)

(30)

III
T3 3

- 'By (31)

Once expressions for the pressure have been obtained in both the crude
and brine regions, the salt dome creep rate must be related to the cavern
pressure. In an effort to develop a model which could adequately
approximate cavern creep closure and run on small computers, a one-
dimensional formulation using equation (1) was chosen for this study.
The derivation is detailed by Van Sambeek21 except that here we have used
the initial cavern radius R to approximate the time-varying radius r.
This approximation has been quantified, and is discussed more completely
in Appendix B. This creep formulation is similar to that of Preece and
Krieg22. Thus, the steady state creep equation used in this work is:

K
litho '

- P(z) 5-5
Ar = R A At exp

cc
(32)

where Ar is the change in radius, R the initial cavern radius, R, the gas
constant, T is a function of depth according to equation (15),  and At is
the time step. Throughout this work, R was taken to be 100 ft. The
values of the other parameters in this equation are:

A - 2.43 x 102' /yr (33)

E - 104.6 W/mole (34)
(25 kcal/mole)

Klitho
= 0.226 bar/m (35)

(1 psia/ft)

P = 8.48 x 104bar

(1.23 x lo6 psia) (36)

These values are based on laboratory creep measurements of the parameters
which were then adjusted to fit actual SPR cavern data. This data was
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wellhead pressure data taken from Bryan Mound 110 during a 2 month quiet
period in the cavern's operation.

As can be seen from equation (43) (Appendix B) the cavern creep, Ar,
depends directly on the differential between the lithostatic pressure and
the cavern pressure. The cavern pressure depends on the wellhead
pressure, and the mass oil and brine in the cavern, denoted M, and Mb
respectively. The amount of oil in the cavern is usually kept constant
while the brine is slowly bled to keep the pressure on the casing to
within allowable limits. By knowing the initial masses of crude and
brine as well as the initial wellhead pressure and interface depth, the
wellhead pressure and interface depth can be followed in time if known
amounts of brine are removed. Neglecting the mass of crude in the pipe
between the surface and the top of the cavern, the initial mass of crude
can be determined according to

(37)

Assuming that pc is a function of only depth, equation (37) can be
simplified to give

Z

J
i

MC = pc r r2(z) dz

Zt

(38)

A similar expression for MB can be obtained, again assuming that pz is a
function only of depth,

(39)

The next step in developing the model was to develop a computer algorithm
which incorporates the above equations to calculate the cavern shape,
pressure, and interface depth with time for varying conditions. This was
accomplished with a FORTRAN program which requires as input the initial
wellhead pressure and the initial interface depth. In addition, the
program requires an initial cavern geometry, taken to be a right circular
cylinder throughout this work:

rT(z, t-0)-R (40)
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The algorithm consists essentially of a large loop containing two
subloops. The large loop begins with an an estimate of P, and zi at time
t - At. While holding P, constant, the estimate of zi is then varied in
the first of the subloops until equation (39) gives the current value for
MB * the mass of the brine in the cavern, to within an acceptable
tolerance. The resulting zi is then used in the second subloop in which
P, is varied in equation (38) until the current value for M, is obtained,
again to within acceptable limits. The large loop around the two smaller
subloops is used to continue the iteration of P,,, and zi via the two
subloops until they no longer flucuate. At this point, the radius of the
cavern is updated using equation (32). It would be more accurate to
reiterate P, and zi using the resulting r(z), continuing until the two
variables P, and zi as well as the function r(z) were unchanging, but
this proved to have little effect on the results. The radial function,
r(z), is stored in an array which contains 10,000 points. In effort to
establish the minimum number of points necessary to store this function,
several lower values were investigated. Ten thousand points was found to
be the minimum necessary to insure accuracy. In addition, to increase
the accuracy of the calculations, a Newton-Gregoryz3 table look-up
algorithm was employed when the r(z) array was called upon to supply a
value for the radius at a given depth.

After selecting the appropriate values for the creep model parameters as
well as the best dimensions for the r(z) array, an investigation was
performed to determine an appropriate time step. The principal objective
of this investigation was to determine at what value of the time step it
ceased to have an effect on the results of the creep model. This
naturally depended on the time scale of the model. For the 30 year'time
span, the accepted lifespan of SPR caverns, the best time step was
determined to be 0.1 years and thus is used throughout this work.

As mentioned above, actual SPR caverns are usually operated in a manner
which has cavern pressure control as its main objective. As a result,
standard SPR operating procedure consists of removing brine from the
cavern every month or so, keeping cavern pressure more or less constant.
In order to model this behavior, the program was written to maintain
constant wellhead pressure by the removal of an appropriate amount of
brine every time step.

RESULTS

Modelling creep in SPR caverns enables several different types of
analyses. A qualitative understanding of the relationships between the
operational variables and physical cavern response can be obtained via
parametric studies. In addition, various approaches to approximating
unknown physical phenomena, such as the temperature profile in the salt
surrounding an SPR cavern, are easily compared. In particular, this work
focuses on the relationships between the wellhead pressure and cavern
depth (controllable parameters), and volume loss and interface movement.
In addition, two different methods of modelling the temperature, using an
average temperature and using a temperature profile linear in the axial
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direction while invariant in the radial and time dimensions, are
compared.

Operating the program in the constant P, mode, thus approximating normal
operating procedures, the effect of the operating pressure, P,, on the
volume lost due to creep and interface depth can be determined. The
extent of these effects will vary with cavern depth. As mentioned above,
throughout this work an initial cavern shape of a right circular
cylinder, with a radius of 30.5 m (100 ft) and an axial length of 610 m
(2000 ft) has been used. In all cases the initial interface depth was
set 76 m (250 ft) from the bottom of the cavern. Three primary caverns
have been modelled, a shallow cavern 457 m - 1067 m (1500 ft - 3500 ft),
a cavern at nominal depth 610 m - 1219 m (2000 ft - 4000 ft), and a deep
cavern 762 m - 1372 m (2500 ft - 4500 ft). The creep for each cavern has
been calculated at a range of wellhead operating pressures for the
mandated thirty-year lifetime of an SPR cavern using two different models
of the temperature in the salt dome.

The relationship between the volume loss, wellhead pressures, and cavern
depth can be demonstrated by plotting the percent volume loss as a
function of wellhead pressures for caverns at all three depths. This can
be accomplished with a single plot if the difference between the
lithostatic pressure and the cavern pressure at the cavern roof is used
as the abscissa. The data has been plotted in this fashion in Figure 2.
From this plot we can easily see that the percent volume loss
dramatically increases with increasing cavern depth. That is, for all
wellhead pressures (as expressed by Plitho(zt) - Pcavern(zt)) the shallow
cavern (dotted line) experiences a smaller percent volume loss throughout
its 30 year lifetime than that of the deep cavern (dashed line). In
addition, the effect of higher wellhead pressure on percent volume loss
is greater for deeper caverns. This is evident from the slope of the
lines in the normal operating pressure range, 34.5 bar - 48.3 bar
(500 psia - 700 psia). That is, in the normal operating range, the slope
of the line representing the deep cavern (dashed line) is much greater
than that of the shallow cavern (dotted line).

The relationship between volume loss and operating pressure can also be
plotted as a ratio, relative to a "standard cavern" as done by Todd14.
Using as a standard a cavern 610 m - 1219 m (2000 ft - 4000 ft) deep,
operated for 30 years at P, = 41.4 bars (600 psia), Todd calculated the
ratio of the volume loss of 610 m - 1219 m (2000 ft - 4000 ft) caverns
operated for 30 years at varying P,, to that experienced by the standard
cavern. Todd's results for a cavern 610 m - 1219 m (2000 ft - 4000 ft)
deep as well as similar results using the current model for caverns at
the three depths discussed above are plotted in Figure 3. The
temperature approximation is not a factor in a comparision of creep rates
for different caverns as the temperature components of the creep
equations drop out when divided. The deviation between Todd's results
and the results of the current model for the cavern 610 m - 1219 m
(2000 ft - 4000 ft) deep are likely due to an integration approximation
ToddI used which degrades with decreasing P,.
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Figure 2. Percent volume loss plotted as a function of the difference between the
lithostatic and cavern pressures at the top of the cavern, zt, for three caverns:
457 m - 1067 m (1500 ft - 3500 ft), 610 m - 1219 m (2000 ft - 4000 ft), and 762 m -
1372 m (2500 ft - 4500 ft), operated for 30 years at a range of wellhead

pressures.
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pressures. Todd's"' results are shown for a caxsrn 610 m - 1219 m (2000 Et -
4000 ft) by the line composed of narrow dashes.



While volume loss is a good indication of operational efficiency, radial
profiles and interface movement indicate where and how the volume loss
occurs. The radial profile at 30 years for the shallow cavern operated
at four different pressures is shown in Figure 4. Normal operating
wellhead pressure is approximately 41.4 bars (600 psia). From this
figure, we immediately see that most of the creep occurs in the bottom of
the cavern where the difference between cavern pressure and lithostatic
pressure is the greatest. Note that the effect of the differing
compressibilities of the oil and brine is unapparent from the shape of
the radial profile: the creep is distributed smoothly over the entire
cavern wall. It is also evident from this radial profile that higher
wellhead pressures limit the volume loss by decreasing the radial
movement of the cavern wall. Higher operating pressures offset the
lithostatic pressure, resulting in a slower creep rate. In Figures 5 and
6 similar results have been plotted for the two deeper caverns. From
these figures we see the influence of cavern depth on creep rate and that
using higher wellhead pressure to minimize volume loss is more effective
for deeper caverns.

Because brine withdrawal is used to maintain constant well pressure by
accomodating  volume loss, deeper caverns with higher creep rates require
higher brine removal rates. Thus the level of the oil/brine interface
should drop with time more dramatically for deeper caverns, subject to
wellhead pressure. This is evident from Figures 4, 5, and 6, the radial
profiles of the caverns in this study, where the interface depths at 0
and 30 years of operation have been recorded. The interface movement
seen from these figures is as expected: for a given cavern, lower
operating pressure requires more brine removal thus resulting in a
greater interface drop. Similarly, at a given operating pressure, deeper
caverns experience greater creep thus requiring greater brine removal
rates, resulting in a greater interface drop.

Radial profiles can also be used to study the relationship between the
creep rate and the temperature profile used in the calculation. In
Figure 7, the difference in the radial profiles for the two different
temperature profiles for the three caverns of varying depths has been
plotted. From this figure we can see that using an average temperature
not only results in a prediction of the creep rate (and therefore the
volume loss) which is smaller than that predicted using the linear
temperature profile, but also that the deviation between the two methods
increases with increasing cavern depth.

A similar comparision between the two temperature models has been made in
Figure 8 where the oil/brine interface depth as a function of time,
calculated for the three caverns using the two different temperature
profiles, has been plotted. The movement of the oil/brine interface is
directly related to the brine removal rates. Therefore, calculations
using the average temperature approximation will predict lower brine
removal rates necessary to maintain constant pressure over the cavern's
lifetime.

Perhaps the most important parameter affected by using the average
temperature approximation in creep calculations is volume loss. The
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Figure 4. Radial profile, r(z), for a 457 m - 1067 m (1500 ft - 3500 ft)
operated for 30 years at 20.7, 41.4, 62.1, and 82.7 bar (300, 600, 900, and
1200 psia). The solid horizontal line denotes the initial interface depth,
991 m (3250 ft), while the filled black circles on the radial profiles
represent the interface depth at 30 years.
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Figure 5. Radial profile, r(z), for a 610 m - 1219 m (2000 ft - 4000 ft)
operated for 30 years at 20.7, 41.4, 62.1, and 82.7 bar (300, 600, 900, and
1200 psia). The solid horizontal line denotes the initial interface depth,
1143 m (3750 ft), while the filled black circles on the radial profiles
represent the interface depth at 30 years.
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percent volume loss for a 610 m (2000 ft) cavern operated for 30 years at
a constant P, = 41.4 bars (600 psia) has been calculated using both
temperature profiles for caverns of varying depth and is plotted in
Figure 9. Again, we see from this figure that the volume loss predicted
by average temperature approximation is less than that predicted by the
linear temperature profile and that this deviation increases with
increasing cavern depth.

As discussed above, the actual temperature profile in the salt,
undoubtedly at least two-dimensional and time dependent, has not been
measured. However, the two methods of modelling the temperature profile
used in this work provide upper and lower bounds on the actual
temperature distribution. Therefore, the actual radial profiles, brine
removal rates, and volume losses would be expected to fall somewhere
between the results predicted by the two models.

The effect of cavern depth on volume loss for caverns maintained at the
same wellhead pressure can also be seen from Figure 9. As discussed
above, deeper caverns not only lose more volume to creep, but the
relationship between cavern depth and volume loss is not linear. Another
commonly discussed issue is where the volume loss occurs in a cavern.
This can be determined from the radial profiles generated by this model.
The easiest way of characterizing the volume loss distribution is to
determine percent of the total creep volume loss over the 30 year
lifespan as a function of depth. This has been plotted in Figure 10 for
the three caverns of varying depth, all operated for 30 years at
P, = 41.4 bars (600 psia). From this figure we can see that for 610 m
(2000 ft) caverns operated at P, = 41.4 bars (600 psia), 80-90% .of the
volume lost occurs in the bottom 183 m (600 ft) or 30 % of the cavern.
In addition, placing the caverns shallower in the dome has the effect of
concentrating the volume loss closer to the bottom of the cavern. In
other words, the volume loss is less axially distributed in shallow
caverns than in deep cavern.

CONCLUSIONS AND FUTURE WORK

Cost considerations require the mitigation of volume loss in SPR caverns
whenever possible. Volume loss can be reduced by operating the cavern at
a higher wellhead pressure. The percent of the cavern volume saved by
increasing the operating pressure a given amount increases with cavern
depth. Thus the cost savings of operating SPR caverns at higher wellhead
pressures increases with cavern depth. The distribution of the volume
loss was found to vary little with cavern depth, with 80-90% of the
volume loss occuring in the bottom 30% of the caverns. The two different
methods of approximating temperature, using an average temperature and
using an axially linear, radially and time invariant temperature profile
were found to differ by up to 35% in volume loss prediction with the
greater differences occuring at the greater cavern depths.
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Figure 9. Percent volume loss as a function of cavern roof depth for 610 m
(2000 ft) caverns operated for 30 years at 41.4 bar (600 psia). The results
are shown for both temperature profile models.
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Figure 10. Distribution of volume loss for three caverns: 457 m - 1067 m
(1500 ft - 3500 ft), 610 m - 1219 m (2000 ft - 4000 ft), and 762 m - 1372 m
(2500 ft - 4500 ft), operated for 30 atyears 41.4 bar (600 psia).
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Appendix A

Brine Equation of State

As discussed in the text, the model used in this work employs an equation
of state for saturated brine. This equation, developed by Todd24, was
developed as follows. Todd's analysis begins with Potter and Brown'sz5
equation for brine density as a function of pure water density,
temperature, and molality. This equation is based on an interpolation of
data available in the literature. By substituting expressions for pure
water density and saturated brine molality as functions of temperature
and pressure into this equation, Todd developed a complete saturated
brine equation of state.

The first of these expressions, pure water density as a function of
temperature and pressure, was obtained by curve-fitting data for pure
water density as a function of temperature and pressure26. The equation
for saturated brine molality was more difficult to develop. By fitting
data (at 25°C) for the molality of saturated brine published in an older
edition of the Handbook of Chemistry and Physics27 an equation for
molality as a function of temperature was obtained. Then, since data on
the effect of pressure on solubility at temperatures other than 25°C was
unavailable, data reported by Kaufman28 which gave the rate of change of
saturation molality with pressure as 2.0188e-4 per atmosphere, was used
to add pressure dependence. Since the pressure effect was small and the
temperature range of Brown and Potter's equation was narrow, 0 to 8O"C,
Todd assumed that the rate of change of molality with pressure to be
constant and therefore modified the equation for saturated brine molality
as a function of temperature from the Handbook of Chemistry and Physics
data to include pressure dependency.

Once these expressions for the density of pure water and the molality of
saturated brine, both as functions of temperature and pressure were
developed, they were inserted into Potter and Brown's equation for the
density of brine as a function of molality and the density of pure water.
The final result was the equation of state for brine used in this work.
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Appendix B

Creep Model for a Cylindrical Cavern

Van Sambeekzl has derived an equation for creep in an infinite borehole:

Ar-_ _ C exp[$) ( 2 ](n+l)'2 (l"litho i - '("'1)
rAt (41)

For caverns of large radius, the inward radial creep of the salt
surrounding the cavern is small relative to the cavern radius itself.
Thus a creep model which is not dependent on the time varying radius of
the cavern, but rather the initial radius, can be used. In this appendix
this approximation, as applied in this work, is quantified.

From equation (41), it is seen that excepting the r in the denominator of
the left hand side, appropriate adjustment of parameters (and keeping n
constant) will collapse Van Sambeek's equation to the model used in this
work (equation (32):

Ar =
K
litho '

- P(z) 5*5

P
(42)

In an effort to quantify the differences in calculated cavern creep using
Van Sambeek's model as opposed to the model used in this work, a
comparision study was performed. In this study, four caverns were
studied:
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1 1 I I

Cavern
Number

Cavern 1

Cavern Wellhead Temperature
Depth Pressure Model

610 m - 1219 m 41.4 bar linear
(2000 ft - 4000 ft) (600 psia)

Cavern 2 610 m - 1219 m 41.4 bar average
(2000 ft - 4000 ft) (600 psia)

Cavern 3 762 m - 1372 m 34.5 bar linear
(2500 ft - 4500 ft) (500 psia)

These caverns were chosen for the following reasons. Caverns 1 and 2
represent "nominal" caverns. These caverns, identical except for the
temperature model, are at the depth and operating pressure widely used in
the SPR for calculating nominal cavern properties. Cavern 3 represents
the deepest cavern and lowest operating pressure studied using the creep
model employed in this work. Because this model will deviate from Van
Sambeek's model with greater creep, this cavern was investigated to
determine the differences between the two models in this regime of
greatest deviation. Finally, Cavern 4 is the deepest cavern with the
lowest operating pressure investigated in this work with the average
temperature approximation. By performing a similar calculation using Van
Sambeek's model, the regime of greatest deviation between Van Sambeek's
model and the creep model employed in this work with the average
temperature approximation can be investigated.

This study was carried out as follows. In order to determine the effect
of having the r term in the denominator of equation (41),  equation (42)
was modified to:

Ar -
K 5.5
litho

z - P(z)

P
(43)

The proper way of developing a model with Van Sambeek's formulation would
have been to collapse the constants in equation (41) to resemble the
format of equation (42) and then refit to the actual cavern data used in
the development of the present model. However, in the interest of
demonstrating that the difference between the models is insignificant,
the same constants were used in both cases. That is, the only
modification to the present model, including the values of the constants
used, was to replace the nominal initial radius R in equation (42) with
the actual time-varying radius r. Two parameters were studied, AV and
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r(zb), the volume change and radius at the bottom of the cavern, both at
30 years. The results of this study are tabulated below.

Percent Difference Between The Two Creep Models
Cavern

AV (30 yrs) r(zbs 30 yrs)

Cavern 1 1.5 0.4
Cavern 2 0.8 0.03
Cavern 3 7.4 6.4
Cavern 4 2.6 0.5

As expected, the difference between the two models is greatest for the
deepest cavern with the lowest operating pressure, Cavern 3.
Interestingly, using the average temperature approximation improves the
correlation between the two models.
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